If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+26x-665=0
a = 6; b = 26; c = -665;
Δ = b2-4ac
Δ = 262-4·6·(-665)
Δ = 16636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16636}=\sqrt{4*4159}=\sqrt{4}*\sqrt{4159}=2\sqrt{4159}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{4159}}{2*6}=\frac{-26-2\sqrt{4159}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{4159}}{2*6}=\frac{-26+2\sqrt{4159}}{12} $
| 22x+3=180 | | V=12x41/3 | | x=-63(x-2)+1=2(x-4)+x+13 | | 2(-6+x)=x-3/2 | | -1-2z=-3z | | 3(x-2)+1=2(x-4)+x+133(x-2)+1=2(x-4)+x+133(x-2)+1=2(x-4)+x+133(x-2)+1=2(x-4)+x+133(x-2)+1=2(x-4)+x+133(x-2)+1=2(x-4)+x+133(x-2)+1=2(x-4)+x+133(x-2)+1=2(x-4)+x+133(x-2)+1=2(x-4)+x+13 | | 65x+3=180 | | 2(4y+8)-5y=29 | | G=2g+6 | | x^2+3x-7=2x^2-7x-31 | | 6/5c-5=2 | | 2r2+-7r+1=0 | | 3k-7=15 | | -6.43(h-5)+8=17 | | Y=18*(1x)/3 | | .5(4x-16)+8x=12 | | 10-6w=-2w-10 | | 5/4=-15/8+y | | Y=18*1x/3 | | 8x-4=11+5x | | 5=-2+5/6a | | 2x+2(3x+6)=36 | | -3(c-5)-4c=60 | | 22.1+0.21x=24.95+0.16x | | 85=-8(-4x)-2(-4x)-10(-4x)+5 | | 5/4=-18/8+y | | 22.1+0.21x=24.95+0.16 | | 19(b+3)=-19 | | X+5y=192 | | 1-1/5n=3 | | 12x^2–140x-300=0 | | x+0.19x=150 |